Sampling Techniques-Simple Random Sampling and Systematic Sampling (ISS Statistics Paper III): Questions 1 - 5 of 5

Get 1 year subscription: Access detailed explanations (illustrated with images and videos) to 90 questions. Access all new questions we will add tracking exam-pattern and syllabus changes. View Sample Explanation or View Features.

Rs. 250.00 or

Question number: 1

» Sampling Techniques » Simple Random Sampling and Systematic Sampling

Appeared in Year: 2010

Short Answer Question▾

Write in Short

A hypothetical population has the population units in linear trend given by Yi = a +bi (i = 1, 2, … N).

Show that: V ( y̅WR)=b212n(N+1)(N1)

V ( y̅WOR)=b212(k1)(N+1) where N = nk

V ( y̅SY)= b212(k21)

Hence, deduce that V(ySY):V(yWOR):V(yWR)=1n:1:n

Question number: 2

» Sampling Techniques » Simple Random Sampling and Systematic Sampling

Appeared in Year: 2011

Essay Question▾

Describe in Detail

Explain aligned sample and unaligned systematic sampling method

Explanation

Systematic sampling in two dimensions:

The linear systematic sampling can be extended for two dimensions populations. here it is assumed that the n m k l population units are arranged in the form of ml rows, each containing nk units and a systematic sampling of m n units is selected.… (228 more words) …

Question number: 3

» Sampling Techniques » Simple Random Sampling and Systematic Sampling

Appeared in Year: 2010

Essay Question▾

Describe in Detail

Explain the concepts of linear and circular systematic sampling giving suitable illustrations.

Further, show that for linear systematic sampling, sample mean is an unbiased estimator for population mean.

Explanation

Let us suppose that N sampling units are serially numbered from 1 to N in some order and a sample of size n is to be drawn in such a way that N is expressible as a product of two integers n and k.

N = nk → k =… (548 more words) …

Question number: 4

» Sampling Techniques » Simple Random Sampling and Systematic Sampling

Appeared in Year: 2012

Short Answer Question▾

Write in Short

Show that mean of a systematic sample is more precise than the mean of a simple random sample of size n under a certain condition to be obtained by you.

Question number: 5

» Sampling Techniques » Simple Random Sampling and Systematic Sampling

Appeared in Year: 2013

Essay Question▾

Describe in Detail

Explain circular systematic sampling. Show that minimum value of ρ is 1(n1) , when Vsy(y)=0 , where ρis intraclass correlation and y is the sample mean.

Explanation

Circular systematic sampling

This method consists of choosing a random start from 1 to N and selecting the unit corresponding to the random start and thereafter every kth unit in a cyclic manner till a sample of size n units is obtained, k being the integer nearest to N… (640 more words) …

Sign In