# ISS (Statistical Services) Statistics Paper I (Old Subjective Pattern): Questions 67 - 71 of 165

Get 1 year subscription: Access detailed explanations (illustrated with images and videos) to **165** questions. Access all new questions we will add tracking exam-pattern and syllabus changes. View Sample Explanation or View Features.

Rs. 550.00 or

## Question number: 67

» Statistical Methods » Tests of Significance » Z-Test

Appeared in Year: 2014

### Describe in Detail

Let X follow a binomial distribution B (n, P). Explain the test procedure for

H _{0}: P = P _{0} against H _{1}: P > P _{0}

when the sample size is (i) small, and (ii) large. It is desired to use sample proportion p as an estimator of the population proportion P, with probability 0·95 or higher, that p is within 0·05 of P. How large should sample size (n) be?

### Explanation

… (184 more words) …

## Question number: 68

» Numerical Analysis » Inverse Interpolation

Appeared in Year: 2015

### Describe in Detail

Compute the value of by Simpson’s 1/3 ^{rd} rule. Given that ln4.0 = 1.39, ln4.2 = 1.43, ln4.4 = 1.48, ln4.6 = 1.53, ln4.8 = 1.57, ln5.0 = 1.61, ln5.2 = 1.65

### Explanation

… (36 more words) …

## Question number: 69

» Numerical Analysis » Inverse Interpolation

Appeared in Year: 2014

### Describe in Detail

Given the following values of the function y = f (x); evaluate f (4) and also find x for which f (x) = 25.

f (1) = 10, f (2) = 15, f (3) = 42.

### Explanation

… (54 more words) …

## Question number: 70

» Probability » Distribution Function » Standard Probability Distributions

Appeared in Year: 2010

### Describe in Detail

Let (X, Y) be jointly distributed with p. d. f.

Find marginal probability density function of X and Y.

### Explanation

… (31 more words) …

## Question number: 71

» Numerical Analysis » Interpolation Formulae » Lagrange

Appeared in Year: 2010

### Describe in Detail

The observed-values of a function are respectively 168, 120, 72 and 63 at the four positions 3, 7, 9 and 10 of the independent variable. What is the best estimate you can give for the value of the function at the position 6 of the independent variable?

### Explanation

… (26 more words) …