Mathematical Physics [GATE (Graduate Aptitude Test in Engineering) Physics]: Questions 21 - 27 of 76

Access detailed explanations (illustrated with images and videos) to 659 questions. Access all new questions- tracking exam pattern and syllabus. View the complete topic-wise distribution of questions. Unlimited Access, Unlimited Time, on Unlimited Devices!

View Sample Explanation or View Features.

Rs. 450.00 -OR-

How to register? Already Subscribed?

Question 21

Mathematical Physics

Appeared in Year: 2011

Question

MCQ▾

The unit vector normal to the surface at the point is –

Choices

Choice (4)Response

a.

b.

c.

d.

Question 22

Mathematical Physics

Appeared in Year: 2013

Question

MCQ▾

If and are constant vectors, then is –

Choices

Choice (4)Response

a.

b.

c.

d.

Question 23

Mathematical Physics
Basis

Appeared in Year: 2013

Question

MCQ▾

is equal to –

[Given and ]

Choices

Choice (4)Response

a.

b.

c.

d.

Question 24

Mathematical Physics
Covariant and Contravariant Tensor

Appeared in Year: 2013

Question

MCQ▾

In the most general case, which one of the following quantities is NOT a second order tensor?

Choices

Choice (4)Response

a.

b.

c.

d.

Question 25

Mathematical Physics

Appeared in Year: 2013

Question

MCQ▾

A monochromatic plane wave at oblique incidence undergoes reflection at a dielectric interface. If and are the unit vectors in the directions of incident wave, reflected wave and the normal to the surface respectively, which one of the following expressions is correct?

Choices

Choice (4)Response

a.

b.

c.

d.

Question 26

Mathematical Physics

Appeared in Year: 2013

Write in Short

Short Answer▾

The degenerate eigenvalue of the matrix is (your answer should be an integer) ________.

Question 27

Mathematical Physics

Appeared in Year: 2013

Question

MCQ▾

For a scalar function satisfying the Laplace equation, has –

Choices

Choice (4)Response

a.

Zero curl and zero divergence

b.

Zero curl and non – zero divergence

c.

Non – zero curl and non – zero divergence

d.

Non – zero curl and zero divergence

Developed by: