Answer

Step by step solution by experts to help you in doubt clearance & scoring excellent marks in exams.

Updated On: 26-2-2021

Apne doubts clear karein ab Whatsapp par bhi. Try it now.

CLICK HERE

Loading DoubtNut Solution for you

Watch 1000+ concepts & tricky questions explained!

9.1 K+

400+

Transcript

Time | Transcript |
---|---|

00:00 - 00:59 | question is why we can verify that whether there is there is any use of any exception on this very careful then this is the first one and this is what is this if if if the square of two squares 2 of 2 and this is the perfect square of first and second point is our present time |

01:00 - 01:59 | if this doesn't scare we are clearly see that there is a positive and his and his perfect is this 2.8 ah yes we can use this in this question it like this so that we are directly is a that it wasn't 224 inside describe it is already square is this 4 inside a square to it become too because we know that the square of its for there is there if i / to show income |

02:00 - 02:59 | I know that we take the square of now comparing this we can use so if I compare compare this by this from here you can set the value of a value of V is by come if you see this 64 if I splits into 3 into 2 so 2 part 3 part is this now once we get the value of A and B we put diesel in |

03:00 - 03:59 | become this is the version of this equation which is the answer thank you |

**Introduction of Factorisation**

**Factors **

**Factorization**

**Factors of a monomial**

**Common factors of two or more monomials**

**Greatest common factor (gcf) or highest common factor (hcf) The greatest common factors of given monomials is the common factor having a greatest coefficient and highest power of the variables.**

**Factorization of algebraic expressions when a common monomial factor occurs in each term**

**Factorizations of algebraic expressions when a binomial is a common factor**

**Grouping of the terms of an algebraic expression may lead to its factorization.**

**Factorize each of the following expressions : (i) `a^3 + a^2 (x-y) - a (y+z) - z` (ii) `(x^2+3x)^2 - 5 (x^2+3x) - y (x^2+3x) + 5y`**