Integral Calculus-Integration Using Trigonometric Identities (BITSAT Mathematics): Questions 1 - 7 of 10

Get 1 year subscription: Access detailed explanations (illustrated with images and videos) to 348 questions. Access all new questions we will add tracking exam-pattern and syllabus changes. View Sample Explanation or View Features.

Rs. 250.00 or

Question number: 1

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

13tan1(xx2+1)+tan1(x2+1x)dx=________

Choices

Choice (4) Response

a.

2π

b.

4π

c.

π

d.

None of the above

Question number: 2

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

1311+x2 is equal to

Choices

Choice (4) Response

a.

π12

b.

π3

c.

π4

d.

π6

Question number: 3

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

π12π121cos2xdx=_

Choices

Choice (4) Response

a.

12log3

b.

log3

c.

13log2

d.

All of the above

Question number: 4

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

cos2x(sinx+cosx)2dx is equal to –

Choices

Choice (4) Response

a.

sinx+cos

b.

cos2x

c.

log(sinx+cosx)+c

d.

sinxlog(sinx+cosx)+c

Question number: 5

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

0π2sinxsin2xdx is equal to –

Choices

Choice (4) Response

a.

13

b.

π3

c.

23

d.

None of the above

Question number: 6

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

0π1cosxdx

is equal to –

Choices

Choice (4) Response

a.

2

b.

2

c.

22

d.

1

Question number: 7

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

If 0π2dθ9sin2θ+4cos2θ=kπ, then k=

Choices

Choice (4) Response

a.

13

b.

116

c.

112

d.

18

f Page
Sign In