Integral Calculus (BITSAT Mathematics): Questions 1 - 7 of 14

Get 1 year subscription: Access detailed explanations (illustrated with images and videos) to 164 questions. Access all new questions we will add tracking exam-pattern and syllabus changes. View Sample Explanation or View Features.

Rs. 150.00 or

Question number: 1

» Integral Calculus » Integration Using Trigonometric Identities

MCQ▾

Question

13tan1(xx2+1)+tan1(x2+1x)dx=________

Choices

Choice (4) Response

a.

2π

b.

4π

c.

π

d.

None of the above

Question number: 2

» Integral Calculus » Integration by Substitution

MCQ▾

Question

If I1=0e2dxlogx and I2=12exxdx , then –

Choices

Choice (4) Response

a.

2I1=I2

b.

I1=2I2

c.

I1=I2

d.

All of the above

Question number: 3

» Integral Calculus » Evaluation of Definite Integrals

MCQ▾

Question

The point of extreme value of ϕ(x)=1xet22(1t2)dt are

Choices

Choice (4) Response

a.

x=2, 1

b.

x=1,1

c.

x=2, 1

d.

x=1, 2

Question number: 4

» Integral Calculus » Integration by Substitution

MCQ▾

Question

If I1=x111+t2dt,I2=11x11+t2dt;x>0 , then –

Choices

Choice (4) Response

a.

I1=I2

b.

I2>I1

c.

I1>I2

d.

All of the above

Question number: 5

» Integral Calculus » Integration by Substitution

MCQ▾

Question

If integral

In=0π4tannxdx,nN,

Then In+2+In equal –

Choices

Choice (4) Response

a.

1n+2

b.

1n

c.

1n1

d.

1n+1

Question number: 6

» Integral Calculus » Fundamental Theorem of Calculus

MCQ▾

Question

11x x dx=________

Choices

Choice (4) Response

a.

2

b.

1

c.

0

d.

All of the above

Question number: 7

» Integral Calculus » Integration by Substitution

MCQ▾

Question

154cosxdx=_

Choices

Choice (4) Response

a.

23tan1(3tanx2)

b.

23tan1(tanx2)

c.

29tan1(3tanx2)

d.

Question does not provide sufficient data or is vague

Sign In